opvizor-performance-analyzer-part-7-performance-in-real-time-for-debian-linux

"Linux tuning information is scattered among many hundreds of sites, each with a little bit of knowledge. Virtual machine tuning information is equally scattered about. This is my attempt at indexing all of it," said Bob Plankers in his Blog.

You can find his complete guide here.

"In a default distro install, system logging is often configured fully, suitable for a server or multi-user system. However, on a single-user system the constant writing of many system log files will result in reduced interactive system performance, and reducing logging activity will be beneficial for performance as well as the lifetime of the flash memory.

In a Debian Wheezy installation, the default system logger is rsyslog, and it configuration file is /etc/rsyslog.conf. In the rules section, the following logs are often enabled by default:

Debian Linux

There may also be rules for -/var/log/debug and -/var/log/messages, and |/dev/xconsole.

Note that kernel messages are logged in both kern.log and syslog, in addition to being available from the dmesg command from kernel memory. In a single user system, it is possible to disable most or all of these logs by placing a ‘#’ character at the start of the corresponding lines. Logs can be re-enabled if it is necessary to debug a system problem."

You can find the complete page here: http://linux-sunxi.org/Optimizing_system_performance

You can find a discussion regarding Linux servers here.

The New Way

If you’re looking for a very modern way to check and monitor performance, you should give Performance Analyzer a try

Monitor and Analyze Debian Linux configuration and performance metrics. Correlate events and metrics from applications and OS inside the guest with our Debian OS metrics. If running virtual, combine them with VMware vSphere or OpenStack metrics. Troubleshoot issues using our efficient data crawler and preconfigured dashboards.

Debian Linux

Some of our Debian OS integration features are:

  • Get System overall status (across multiple systems)
  • Find Disk I/O bottlenecks
  • Full insights into Disk Latency and VM Disk IOps
  • See Memory Issues and Network Issues (Packet Loss) instantly
  • Get all networking details
  • Combine with applications running on top of the OS

Debian Linux

Sign Up for Performance Analyzer today!

CNIL
Metrics and Logs

(formerly, Opvizor Performance Analyzer)

VMware vSphere & Cloud
PERFORMANCE MONITORING, LOG ANALYSIS, LICENSE COMPLIANCE!

Monitor and Analyze Performance and Log files:
Performance monitoring for your systems and applications with log analysis (tamperproof using immudb) and license compliance (RedHat, Oracle, SAP and more) in one virtual appliance!

Subscribe to Our Newsletter

Get the latest product updates, company news, and special offers delivered right to your inbox.

Subscribe to our newsletter

Use Case - Tamper-resistant Clinical Trials

Goal:

Blockchain PoCs were unsuccessful due to complexity and lack of developers.

Still the goal of data immutability as well as client verification is a crucial. Furthermore, the system needs to be easy to use and operate (allowing backup, maintenance windows aso.).

Implementation:

immudb is running in different datacenters across the globe. All clinical trial information is stored in immudb either as transactions or the pdf documents as a whole.

Having that single source of truth with versioned, timestamped, and cryptographically verifiable records, enables a whole new way of transparency and trust.

Use Case - Finance

Goal:

Store the source data, the decision and the rule base for financial support from governments timestamped, verifiable.

A very important functionality is the ability to compare the historic decision (based on the past rulebase) with the rulebase at a different date. Fully cryptographic verifiable Time Travel queries are required to be able to achieve that comparison.

Implementation:

While the source data, rulebase and the documented decision are stored in verifiable Blobs in immudb, the transaction is stored using the relational layer of immudb.

That allows the use of immudb’s time travel capabilities to retrieve verified historic data and recalculate with the most recent rulebase.

Use Case - eCommerce and NFT marketplace

Goal:

No matter if it’s an eCommerce platform or NFT marketplace, the goals are similar:

  • High amount of transactions (potentially millions a second)
  • Ability to read and write multiple records within one transaction
  • prevent overwrite or updates on transactions
  • comply with regulations (PCI, GDPR, …)


Implementation:

immudb is typically scaled out using Hyperscaler (i. e. AWS, Google Cloud, Microsoft Azure) distributed across the Globe. Auditors are also distributed to track the verification proof over time. Additionally, the shop or marketplace applications store immudb cryptographic state information. That high level of integrity and tamper-evidence while maintaining a very high transaction speed is key for companies to chose immudb.

Use Case - IoT Sensor Data

Goal:

IoT sensor data received by devices collecting environment data needs to be stored locally in a cryptographically verifiable manner until the data is transferred to a central datacenter. The data integrity needs to be verifiable at any given point in time and while in transit.

Implementation:

immudb runs embedded on the IoT device itself and is consistently audited by external probes. The data transfer to audit is minimal and works even with minimum bandwidth and unreliable connections.

Whenever the IoT devices are connected to a high bandwidth, the data transfer happens to a data center (large immudb deployment) and the source and destination date integrity is fully verified.

Use Case - DevOps Evidence

Goal:

CI/CD and application build logs need to be stored auditable and tamper-evident.
A very high Performance is required as the system should not slow down any build process.
Scalability is key as billions of artifacts are expected within the next years.
Next to a possibility of integrity validation, data needs to be retrievable by pipeline job id or digital asset checksum.

Implementation:

As part of the CI/CD audit functionality, data is stored within immudb using the Key/Value functionality. Key is either the CI/CD job id (i. e. Jenkins or GitLab) or the checksum of the resulting build or container image.

White Paper — Registration

We will also send you the research paper
via email.

CodeNotary — Webinar

White Paper — Registration

Please let us know where we can send the whitepaper on CodeNotary Trusted Software Supply Chain. 

Become a partner

Start Your Trial

Please enter contact information to receive an email with the virtual appliance download instructions.

Start Free Trial

Please enter contact information to receive an email with the free trial details.